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1. INTRODUCTION

In 1918 A. Haar [4] characterized those n-dimensional subspaces Un of
C[O, 1] for which there exists a unique best approximation to every real
valued function f E C[O, 1] in the uniform (L 00) norm. Haar proved that
uniqueness always holds if and only if Un is a Tchebycheff (T-) system on
[0, 1], or what is sometimes referred to as a Haar system (or Haar space).
This simply means that no U E Un \ {o} has more than n - 1 zeros in [0, 1].
This is an intrinsic condition on Un and is generally easily checked.

It is natural to consider this same problem in the L 1[0, 1] norm. A first
result was obtained by Jackson [6], who proved that if Un =7I:n _I' the
space of algebraic polynomials of degree at most n - 1, then there exists a
unique best approximant to each f E C[O, 1]. Two more general results
were proved by Krein [8] in 1938. He showed that given any Un' as
above, there exist f ELI [0, 1] with more than one best approximant. (This
result was later reproved by Moroney [11].) He also generalized Jackson's
result by proving that if Un is a T-system on (0,1) then uniqueness holds
for every f E C[O, 1]. However, unlike the situation in the uniform norm, it
is not necessary that Un be a T-system in order that uniqueness hold. Thus
the search for intrinsic, easily verified, necessary, and sufficient conditions
on Un ensuring uniqueness to every f E C[O, 1] in the L I-norm has con
tinued. Results in this direction were obtained by Ptak [13], Kripke and
Rivlin [9], and Singer [15]. The first complete solution to this problem
seems to be due to Cheney and Wulbert [2]. Unfortunately the conditions
they set forth are not at all easily verifiable for specific Un' More recently,
Strauss [20] has given conditions which are somewhat different, but which
are still not easily checked. The fact that nothing comparable in simplicity
to Haar's theorem has been obtained is not surprising. The problem does
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not lend itself to such a solution. One of the reasons for this is that Haar's
theorem remains valid when we alter the norm to any L 00 norm with
positive, continuous weight function w(x), i.e.,

IIf II OO,w = max{ I/(x)1 w(x): °~ x ~ 1}.

On the other hand it is easily seen that the criteria for the L 1 problem is
weight function dependent. Thus, for example, in the simplest case n = 1,
the subspace U1 = span {x +c} for fixed C E IR provides a unique best
approximation to every 1 E C[O, 1] if and only if c # -!. The presence of a
weight function, however, will give rise to different C E IR for which uni
queness does not hold.

On the basis of work of Strauss [21] a condition (now termed the
A-property) was formulated which was sufficient to guarantee uniqueness.
This condition is in many instances verifiable and it made possible the
amalgamation of various disparate results which had been obtained for
specific subspaces. For example, Galkin [3] showed that for splines with
fixed knots uniqueness always holds and Carroll and Braess [1] proved
uniqueness for a space of continuous functions obtained by pasting
together T-systems. A more general class of spaces, including those men
tioned above, was considered by Sommer [16, 17], who used the
A-property to obtain his results.

In this paper we study the problem of characterizing all those subspaces
Un for which there is uniqueness of the best approximant from Un to each
1 E C[O, 1] in every L~-norm, where w is a positive continuous weight
function and

11/11w= {I/(X)I w(x)dx.

This problem was first considered by S. J. Havinson [5] in 1958. He
proved that if Un has the property that no U E Un \ {O} vanishes on an inter
val, and if uniqueness holds to each 1 E C[O, 1] in every L~-norm for all
WE IV, where IV is the set of measurable, bounded functions on [0, 1] for
which inf{ w(x): x E [0, I]} > 0, then Un is necessarily a T-system on (0, 1).

In this paper we prove two main results. Firstly, we prove that under
minor restrictions on Un' the A-property, alluded to earlier, is equivalent
to uniqueness of the best approximant from Un to each 1 E C[O, 1] in every
L~-norm for all strictly positive WE CEO, 1]. That is, we restrict our class of
weight functions W to

w = {w: WE C[O, 1], w(x) > 0, X E [0, I]}.

Secondly, without any restriction on the Un' we explicitly characterize all
Un which satisfy the A-property. This equivalent characterization should be
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compared with the sufficient condition given by Sommer in [16, 17]. The
A-property implies that Un is a very spline-like space.

After these results were obtained, Professor Strauss kindly sent the
author two new manuscripts on this problem. In the first of these, Sommer
[18] proved that if Un satisfies the A-property then Un is necessarily a
weak TchebychefT (WT-) system. The other paper by Kroo [10] proves
that Un satisfies the A-property if and only if uniqueness of the best
approximant holds for each f E C[O, 1] in every L~,-norm where WE tv. It
should be noted that we prove this latter result for a more restrictive set of
weight functions (the "only if' part in both cases is an immediate con
sequence of Strauss [20]). However, we must pay a price in that we
somewhat limit the permissible Un'

2. UNIQUENESS IN THE L~-NoRM, W FIXED

Let WE C[O, 1] be a fixed, strictly positive function. We first review the
known results of Cheney and Wulbert [2] and Strauss [21] on the
question of characterizing those n-dimensional subspaces Un of C[O, I] for
which there exists a unique best approximant to each f E C[O, 1] in the
L~-norm, i.e.,

Ilfllw= f If(x)1 w(x)dx.

For ease of exposition we shall say that Un is a unicity space with respect to
W if there exists a unique best approximant from Un to each f E C[O, 1] in
the L~-norm.

We first prove, for completeness, the well-known characterization of best
approximants. Let us set, for f E C[O, 1],

Z(f)= {x:f(x)=O}

and

N(f) = [0, 1]\Z(f).

THEOREM 2.1. u* E Un is a best approximant to f E C[O, 1] in the
L~-norm if and only if

II: u(x) sgn(f(x)-u*(x)) w(x) dX! ::.;;tu-u*) lu(x)1 w(x)dx (1.1)

for all u E Un'
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Proof Assume (1.1) holds. Then for each u E U"

II f - u* II w= f (f - u*)(x) sgn((f - u*)(x)) w(x) dx
N(f - u*)

= f (f-u)(x)sgn((f-u*)(x))w(x)dx
N(f - u*)

+f (u-u*)(x) sgn((f-u*)(x)) w(x) dx
N(f - u*)

~ L(f-u*) l(f - u)(x)1 w(x) dx

+f I(u - u*)(x)1 w(x) dx
Z(f - u*)

= f l(f - u)(x)1 w(x) dx
N(f - u*)

+J \(u-f)(x)lw(x)dx
Z(f - u*)

= Ilf - ull w·
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Now, let u* be a best approximant to f By an application of the Hahn
Banach Theorem, there exists agE L 00 [0, 1] for which

(i) Ilglloo=l,

(ii) (g, u)w=O, for all UE Un,

(iii) (g,J -u*)w= Ilf -u*llw'

where (g, h)w = Jb g(x) h(x) w(x) dx.
From (i) and (iii), it follows that g(x) = sgn((f - u*)(x)) a.e. on

N(f-u*). From (ii), for each UEUn ,

f g(x) u(x) w(x) dx = - f g(x) u(x) w(x) dx.
N(f-u*) Z(f-u*)

Thus

If u(x) sgn((f - u*)(x)) w(x) dxl
N(f - u*)

=If g(X)U(X)W(X)dX!
Z(f - u*)

~ f lu(x)1 w(x) dx
Z(f - u*)

by (i). I
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In 1969, Cheney and Wulbert [2] characterized the unicity spaces Un
with respect to w. The characterization will be less useful to us than the
proof thereof.

THEOREM 2.2 (Cheney and Wulbert [2]). Let Un be an n-dimensional
subspace of CEO, 1]. Then Un is a unicity space with respect to w if and only
if there does not exist a measurable set A of [0, 1] with boundary Y such
that

(i) SA u(x) w(x) dx= SEO,I]\A u(x) w(x) dx,for all UE Un,

(ii) there exists a u* E Un \ {O} such that u*(x) =°for all x E Y n
(0, 1).

Proof Assume that there exists an A and u* satisfying (i) and (ii). We
construct an f E CEO, 1] with more than one best approximant. To do so,
set

\

1,
h(x)=

-1,

From (i) it follows that

xEA,

XE [0, 1]\A.

fa' u(x)h(x)w(x)dx=O

for all u E Un- Let f(x) = lu*(x)1 h(x). Since u*(x) =°for all x E Y n (0, 1),
it follows that f E qo, 1). Redefine h at °and 1 so that f E CEO, 1]. This is
possible and we still maintain the above orthogonality, Now, for any
choice of u E Un,

Ilf -ull w=rIf(x)-u(x)1 w(x) dx
o

~ fa' h(x)(f(x) - u(x» w(x) dx

= fa' h(x) f(x) w(x) dx

= fa' lu*(x)1 w(x) dx

= Ilu*llw

=llfll""
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Thus min{111 -ullw: UE Un} = 11/11w. Furthermore, for IAI < 1, sgn(f(x)
AU*(X)) = sgn(h(x) lu*(x)l- AU*(X)) = sgn(h(x) lu*(x)I). Thus

II/-Au*llw= (1/(x)-AU*(x)1 w(x)dx

= ( (f(x) - AU*(X)) sgn(h(x) Iu*(x)l) w(x) dx

=r lu*(x)1 w(x) dx
a

= 11/11w·

It follows that AU* is a best approximant to 1 for all )0' IAI < 1.
To prove the converse, one assumes the existence of an 1 EC[O, 1] with

at least two best approximants U1 and Uz from Un, U1 i Uz. Set
u* = U1 - Uz and ii = (u 1 +Uz )/2. Since the set of best approximants is con
vex, ii is also a best approximant to f It now easily follows that

l(f - ii)(x)1 = l(f - ud(x)I/2 + 1(1- uz)(x)I/2 for all x E [0, 1].

Thus if x EZ(f - ii), i.e., (f - ii)(x) = 0, then (f - ud(x) = (f - uz)(x) = 0,
which implies that u*(x)=O. That is, Z(f -ii)£;Z(u*).

Since ii is a best approximant to 1 it follows from the Hahn-Banach
Theorem that there exists agE L 00 for which

(i) IlgII00=1,

(ii) (g, u)w=O for all UE Un'

(iii) (g,f-ii)w=ll/-iill w'

Furthermore, as in Theorem 2.1, and from (i) and (iii), it follows that
g(x) = sgn((f - ii)(x)) a.e. on N(f - ii). We assume that g(x) =

sgn((f -ii)(x)) for all xEN(f -ii). By a lemma of Phelps [12] (a simple
application of Liapunov's theorem) it may be shown that one may choose
g as above with Ig(x)1 = 1 for all x.

Set A = {x: g(x) = 1}. Then from (ii)

f u(x) w(x) dx = f u(x) w(x) dx
A [O,I]\A

for all U E Un' Y, the boundary of A, is such that each x E Y n (0, 1) is a dis
continuity point of g. These, by construction, are contained in the closed
set Z(f-ii), which is itself contained in Z(u*). Thus on Yn(0,1),
u*(x) = 0. This completes the proof. I
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The next result was proved by Strauss [20,21] in 1977. The original
proof did not use Theorem 2.2.

Let U::={g:gEC[0,1], Ig(x)I=lu(x)1 for some UEUn}. Obviously
Un ~ U::. U:: is generally substantially larger than Un and need not be a
subspace of C[O, 1].

THEOREM 2.3 (Strauss [20, 21]). Un is a unicity space with respect to w
if and only if the zero function is not a best approximant to any g E U::\ {O}
from Un in the L~-norm.

Proof Assume Un is not a unicity space. Let A, Yand u* E Un \ {O} be
as in Theorem 2.2, and set

1,
h(x) =

-1,

xEA,

xE[O,I]\A.

for all U E Un'

It was shown, in the proof of Theorem 2.2, that f*(x)=h(x) lu*(x)1 E

C[O, 1] has more than one best approximant, one of which is the zero
function. Furthermore, If*(x)I=lu*(x)1 so thatf*EU::\{O}.

Assume now that g E U::\ {O } and the zero function is a best
approximant to g from Un' Let U*E Un\{O} be such that Ig(x)1 = lu*(x)1
for all x. Since the zero function is a best approximant to g, it follows from
Theorem 2.1 that

I
ru(x) sgn(g(x» w(x) dx I~ f lu(x)1 w(x) dx
o Z(g)

For A, IAI < 1, consider g(x) - AU*(X). Since Ig(x)1 = lu*(x)l, it is easily
seen that Z(g)=Z(g-AU*) and sgn(g(x»=sgn(g(x)-AU*(X» for all x.
Thus

If ! u(x)sgn(g(X)-AU*(X»W(X)dxl~f lu(x)1 w(x)dx
o Z(g-,lu*)

for all UE Un, implying that AU* is also a best approximant to g for all A,
IAI < 1. I

An equivalent form of Theorem 2.3 is given by the following statement,
based on the characterization of Theorem 2.1.

COROLLARY 2.4 (Strauss [21 ]). Un is a unicity space with respect to w if
and only if to each g E U,~\ {O} there exists a ugE Un for which

rug(x) sgn(g(x» w(x) dx> f lug(x)1 w(x) dx.
o Z(g)
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On the basis of Corollary 2.4 we may now define the A-property
introduced by Strauss (see [21]).

DEFINITION 2.1. We say that the n-dimensional subspace Un of C[O, 1]
satisfies the A-property if for every gE u,,:,\{0} there exists a UE Un\{O} for
which

(i) u(x) = 0 a.e. on Z(g),

(ii) u(x) sgn(g(x)) = lu(x)1 for all XE [0, l]\Z(g).

Note that this definition is independent of w. A totally equivalent for
mulation of the A-property is the following. We record it because it is this
formulation which we use.

DEFINITION 2.1'. Let u* E Un \ {O}. Let I; = (a" b,), i = 1,..., m (m may be
infinite, but is countable), denote the maximum open intervals of (0, 1) on
which u* does not vanish. That is, u*(x) l' 0, X E I" and u*(x) = 0 for all
x E (0, 1)\U7'= Ji' Let I:: = (8 1'00" 8 m ), 8; E { -1, I}, i = 1,..., m. Then Un
satisfies the A-property if for each u* E Un \ {O} and for every choice of 1::, as
above, there exists a u. E Un \ {O} for which

(i) u.(x) = 0 a.e. on Z(u*),

(ii) 8;U.(X)~0, xEI" i= 1,..., m.

Let W = {w: WE C[O, 1], w(x) > 0 for all x E [0, I]}. From Corollary 2.4
we have

THEOREM 2.5 (Strauss [21]). Assume Un satisfies the A-property. Then
Un is a unicity space with respect to each WE W.

Proof Let g E U:\ {O} and let u E Un \ {O} be as in Definition 2.1. From
(i ),

f lu(x)1 w(x) dx = O.
Z(g)

From (ii),

J; u(x)sgn(g(x))w(x)dx= t1Iu(x)1 w(x)dx>O.

Thus uniqueness follows from Corollary 2.4. I
Remark. Based on Theorems 2.2 or 2.3, or the A-property, it is easily

shown that if Un is aT-system on (0, 1), then Un is a unicity space for all
WE W. One may also use the above results to prove uniqueness for various
other subspaces, see, e.g., Sommer [16, 17].
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3. UNICITY SPACES AND THE A-PROPERTY

The previous result proved that the A-property for Un is sufficient to
ensure that Un is a unicity space in the L~-norm for every WE W. Under
minor assumptions on Un, we prove the converse.

Let A be a measurable subset of [0, 1]. For notational ease, let IA I
denote its Lebesgue measure.

THEOREM 3.1. Let Un be an n-dimensional subspace of C[O, 1]. Assume
that for every UE Un, IZ(u)1 = lint(Z(u))I. If Un is a unicity space in the L~

norm for every WE W, then Un satisfies the A-property.

Remark. We recall that without any restriction on Un, this result was
recently proved by Kroo [10] if we replace W by the set of all bounded,
measurable, strictly positive functions.

Proof Assume that Un does not satisfy the A-property. By
Definition 2.1' there then exists a u* E Un \ {O} such that the following hold:

Let Ii, i = 1,... , m, be maximal non-zero open intervals of u* in (0, I) (m
may be infinite). There exists E* = (er, ... , e::;), et E {-I, I}, i= 1,..., m, such
that no u E Un \ {O} satisfies

(i) u(x)=Oa.e.on Z(u*),

(ii) etu(x) ~ 0, x Eli, i = 1,..., m.

Let D= {u: UE Un, u(x)=O a.e. on Z(u*)}. Obviously Dis a subspace of
Un of dimension k, l~k~n (k~1 since u*ED). Let D=span{u\, ...,ud.
Define V= span {v I , ... , vd where

and

v;(x) = h(x) ui(x), i= 1,..., k,

h(x) Jet,

( 0,

xEIi , i= 1,... , m,

otherwise.

From the above it follows that there exists no v E V\ {O} for which v(x) ~°
for almost all x.

We claim that there exists aWE W for which

J: u(x) h(x) w(x) dx = 0, for all U ED.

Consider V = {v(x) dx: v E V} as a subset of M[O, 1] (= C' [0, 1]), the
set of real Borel measures of bounded total variation on [0, 1], i.e., the
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dual space of CEO, 1]. We shall consider M[O, 1] endowed with the
weak*-topology induced by CEO, 1]. Set

K = {fl: dfl E M[O, 1], dfl? 0, ( dfl = 1},

i.e., K is the set of probability densities on [0, 1].
In the weak*-topology on M[O, 1], K is a compact, convex subset of

M[O, 1], while V is a finite-dimensional subspace. Furthermore,
K n V = 0 since no v E V is non-negative a.e. on [0, 1]. As such, there
exists (see, e.g., Schaefer [14]) a continuous linear functional W on
M[O, 1] such that w(v) =°for all v E V and W(fl) >°for all fl E K. In the
weak*-topology, continuous linear functionals may be represented by
functions in CEO, 1]. Without abusing notation we also denote this
representing function by W. Thus WE CEO, 1], and

( v(x) w(x) dx = 0,

rW(x) dfl(X) >0,
o

all v E V,

all fl E K.

Since bx (the point functional at x) is in K for each x E [0, 1], it follows
that w(x»O for all XE [0,1]. Thus WE W, and

ru(x) h(x) w(x) dx = 0, all UED.
o

Note that if IZ(u*)1 = 0, then we are finished since then D= Un and
u*(x) h(x) E U:\ {O}. Note also that the value of won Z(u*) has absolutely
no effect on the above orthogonality condition since h(x) =° for all
XEZ(U*).

Let Un = span{u l ,· .. , un} where uj,'''' Uk is a basis for D. Set 0=
span{uk + I , ... , un}. Thus dim O=n-k. Assume n-k? 1. The subspace 0
restricted to int(Z(u*)) is of dimension n - k. Otherwise there exists a
UE o\{o} which vanishes identically on int(Z(u*)), and since IZ(u*)1 =
lint Z(u*)I, we obtain UE D, a contradiction. As such there exist points
XI < ... <xn-k> xjEintZ(u*),j= 1, ...,n-k, such that

det(ui(xj))7~k+ I.;::t fo 0.

Since XjE int(Z(u*)), and int(Z(u*)) is open, there exist intervals (~j' f3j ),
j=I, ...,n-k, such that XjE(~j,f3j)£[~j,f3J£intZ(u*),the [~j,f3j] are
disjoint, and
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Set g u;(x) h(x) dx = -y;, i = k + 1,..., n. There exist {cJj= ~ such that

i=k + 1,..., n.

We define W E W as follows.

(i) w(x)=w(x), XE [0, 1]\int(Z(u*)),

(ii) w(x)=lc), xE[aj,pj ], ifcj#O,

(iii) w(x) = w(x), X E [aj' Pi]' if cj = 0,

(iv) WE C[O, 1] and w(x) >°for all x E [0, 1].

This may be done. Now, set

\

h(X),

h(x) = sgn cj '

0,

By construction, it follows that

XE [0, 1]\Z(u*),

xE[aj,pj ],

otherwise.

( u(x) h(x) w(x) dx = 0,

Our contradiction to the unicity property now follows. Set f(x) =
h(x) lu*(x)l. By construction,fEC(O, 1), and we may alter the values at °
and 1, if necessary, so that fE C[O, 1]. Furthermore, If(x)1 = lu*(x)1 so
thatfE U:\{O}. For any UE Un,

Ilf-ull w=r If(x)-u(x)1 w(x)dx
o

;?: r(f(x) - u(x)) h(x) w(x) dx
o

-j

= j f(x) h(x) w(x) dx
o

= Ilu*llw

= Ilfllw·

Thus the zero function is a best approximant to ffrom Un in the L~-norm.

We now apply Theorem 2.3 to obtain our result. I
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4. THE A-PROPERTY
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In this section we obtain specific conditions on Un which are equivalent
to the A-property. We defer, however, to the next section, the proof of the
main result.

We first record the definitions and some properties of Tchebycheff (T-)
and weak Tchebycheff (WT-) systems.

DEFINITION 4.1. Let Un <:; CEO, 1J be an n-dimensional subspace. Un is
said to be a Tchebycheff (T-) system on (0, 1) if no U E Un \ {O} has more
than n - 1 zeros on (0, 1).

DEFINITION 4.2. Un, as above, is said to be a weak Tchebycheff (WT-)
system on [0, 1J if no u E Un has more than n - 1 sign changes on [0, 1].
That is, there do not exist n + 1 points 0:'( Xl < ... < Xn+ 1:'( 1 and a u E Un
for which u(x;) U(X i + 1) < 0, i = 1,..., n.

Both T- and WT- systems have various equivalent formulations. Two of
these for WT-systems are contained in the following proposition.

PROPOSITION 4.1 (Jones and Karlovitz [7J). Un, as above, is a WT
system on [0, 1J if and only if anyone of the following hold.

(1) Given 0=XO<x 1 < ... <xn- l <Xn= 1 there exists a UE Un\{O}
for which

(-lru(x)~O, XE[Xi_I,XJ, i=I, ... ,n.

(2) If Un = span {u 1>'''' un} then there exists an E E { - 1, I} such that
for any choice of 0:'( X I < ... < x n:'( 1

E det(ui(x))Zj~ 1 ~ 0.

Various additional properties of T- and WT-systems will be employed.
Before stating these properties we present the following simple lemma
which is used in the proofs of Proposition 4.3 and Lemma 4.8. This lemma
is stated in Stockenberg [22J, but the proof therein is in error.

LEMMA 4.2. Let U be a subspace of CEO, 1]. Let Xl"'" Xm E [0, 1], m
finite, be points such that for each i = 1,..., m, there exists a U i E U such that
ui(x;) # 0. Then there exists a U E U for which u(x;) # 0, i = 1,..., m.

Proof We prove the lemma via induction on the number of points.
There exists a u 1 E U for which u 1(X 1) # 0. Assume that given Xl"'" Xk _ 1

there exists a u* E U for which u*(x;) #0, i= 1,..., k-1. If u*(xd #0 there
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is nothing to prove. Assume u*(xd = O. There exists a Uk E U for which
Uk(Xk) #- O. Let u = u* + £Uk for e sufficiently small, e #- O. Then necessarily
u(x;) #- 0, i = I, ..., k. I

The following three known results will be used.

PROPOSITION 4.3 (Stockenberg [22]). Let Un be a WT-system on [0, 1].
Assume that for each x E (0, 1) there exists a u E Un for which u(x) #- O.
Assume also that no u E Un \ {O} vanishes on a subinterval of [0, 1]. Then Un
is aT-system on (0, 1).

PROPOSITION 4.4 (Sommer [16]). Let Un be a WT-system of dimension
n on [0, 1]. For any °~ a < b ~ 1, Un I [a.b] is a WT-system of dimension
~n.

PROPOSITION 4.5 (Sommer and Strauss [19], Stockenberg [22]). Let
Un be a WT-system of dimension n on [0, 1]. Then there exists a Un_ I C;; Un
such that Un- l is a WT-system of dimension n - 1 on [0, 1].

The following proposition will not be used in this work. However, it is
sufficiently simple and elegant to present here.

PROPOSITION 4.6 (Sommer [18, Theorem 6]). Let Un C;; C[O, 1] be an
n-dimensional subspace which satisfies the A-property. Then Un is a WT
system on [0, 1].

Proof Let 0 = X o < Xl < ... < X n = 1. By Proposition 4.1, it suffices to
prove the existence of a u E Un \ {O} such that ( - l)i u(x) ~ 0,
X E [Xi-I, x;], i = 1,... , n. Since dim Un = n, there exists a UE Un \ {O} such
that U(Xi) =0, i=I, ...,n-l, i.e., XiEZ(U), i=I, ...,n-1. From the
A-property it therefore follows that there exists a u E Un \ {O} such that
(-I)iu(x)~O, XE[Xi_I>X I ], i=I, ...,n. That is, if Ij ,j=I,...,m, are the
maximal open intervals of (0, 1) on which u(x) does not vanish, then
xi¢Ij, i= 1,..., n-l;j= 1,..., m, so that we may choose the ejE {-I, I}, as
in Definition 2.1', to ensure our result. I

Our analysis of the A-property is based on the following theorem, the
proof of which is deferred to the next section. In this section we will con
sider various consequences of this theorem.

THEOREM 4.7. Let Un be an n-dimensional subspace of C[O, 1]. Assume
that Un satisfies the A-property. Given UE Un\{O}, let

D= {u: u E Un, u(x) = 0 a.e. on Z(u)}.
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Then the number of maximal open intervals of (0, 1) on which u(x) does not
vanish is bounded above by dim D.

This immediately implies that Un is a WT-system, as is any Das above.
Throughout the rest of this section we assume that Theorem 4.7 holds.

LEMMA 4.8. Let A = {x: x E [0, 1], u(x) =°for all u E Un}, and let B =
(0, 1)\A. Then B is the union of at most n open intervals.

Remark. We call A the fundamental zero set of Un"

Proof Assume not. Then we can find points Y 1 < ... < Yn+ l' Yi E B,
and XiE(Yi' Yi+d, i= I, ...,n, for which XiEA. From Lemma 4.2, there
exists a u E Un such that u( y;) # 0, i = 1'00" n + 1. Since u must vanish at the
x;'s which interlace the y;'s, this implies the existence of at least n+ I
maximal open intervals of (0, 1) on which u(x) does not vanish. This con
tradicts Theorem 4.7. I

Therefore B = U1~ 1(ai' b;) where k ~ n, and the (ai' b;) are disjoint.

PROPOSITION 4.9. Let U~ = Un I [ai. b ,] ' i = 1'00" k. Then Un = U~ EB ...
EB U~. That is, each U~ has a basis offunctions which vanish identically off
[ai' b,J, and n = L:1~ 1 dim U~.

Proof If k = 1, there is nothing to prove. Assume k > 1. For some i, set
(a, b) = (ai' b;), and V = U~. Then dim V = r ~ 1. We claim that r < n. If
dim V = n, then there exist points a < Xl < ... < X n < band u* E V for
which u*(xi)(-lr>O, i=l,oo.,n. Since u*(a)=O ifa>O and u*(b)=O if
b> 1 (and at least one of the conditions hold since k> 1) it follows that
there exist at least n (and thus exactly n by Theorem 4.7) maximal open
intervals on which u* does not vanish, all of which are in (a, b). As such it
is necessary that u*(x)=O for all x¢ [a, b]. Now, set

U(u*)= {u: u(x)=O a.e. on Z(u*)}.

Since k> 1, dim U(u*) < n. This contradicts Theorem 4.7 since u* has n
maximal open intervals on which u* does not vanish. Thus r < n.

It remains to prove that there is a basis for V all of whose elements
vanish identically off [a, b]. Since 1~ r < n, there exist n - r linearly
independent functions in Un which vanish identically on [a, b]. Set

W = {u: u E Un, u(x) == 0, X E [a, b]}.

Wis a subspace of Un, and dim W=n-r. Let V=span{u l , ... , ur }, where
we choose each U i with at least r - 1 sign changes on (a, b), i.e., each U i has
associated /1,oo.,Im in (a, b) with m ~ r.

640/48/2-6
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We claim that U i on [0, 1]\[a, b] is an element of W. If not then
W U {u i } on [0, 1]\ [a, b] is a subspace of dimension n - r + 1. As such
there exists aWE Wand a constant a such that au; +W changes sign n - r
times on [O,I]\[a,b], i.e., associated with au;+w are rt, ...,I~ with
k ? n - r + 1. If a #- 0, we immediately obtain a contradiction to
Theorem 4.7 since m +k? n + 1, and (au i+ w)(a) = ° if a> 0,
(aui+w)(b)=O if b< 1. Moreover we may assume a#-O since a small per
turbation of a will not decrease the number of sign changes in
[O,I]\[a,b].

Since U j on [0, 1]\[a, b] is an element of Wfor each i= 1,... , r, it follows
that there exist Wi E W, i = 1,..., r, such that (u; - wi)(x) =° for all
x¢[a,b], and (uj-w,)(x)=u;(x) for all xE[a,b]. This proves the
proposition. I

On the basis of the above proposition, we can and will assume that for
each x E (0, 1) there exists a UE Un for which u(x) #- 0. Under these
assumptions we first deal with the simplest case.

PROPOSITION 4.10. If no UE Un \ {O} vanishes on a subinterval of (0, 1)
then Un is a T-system on (0, 1).

Remark. This is the result due to Havinson [5], see also Kroo [10].

Proof A consequence of Proposition 4.3 and Theorem 4.7. I
To deal with the remaining case we first present the following definition.

DEFINITION 4.3. We say that [a, b], 0::;: a < b::;: 1, is a zero interval of
UEUn if u(x)=O for xE[a,b], and U(X) #-0 for all xE(a-/;,a), some
/; > 0, if a> 0, and u(x) #- °for all x E (b, b + C), some /; > °if b < l.

Note that the A-property implies that the zero set of each U E Un is com
posed of at most n + 1 distinct points and/or intervals.

LEMMA 4.11. There exist at most n-l points O<b t < ... <b,< 1
(r::;: n - 1) such that [0, b;] is a zero interval of some UE Un \ {O}.

Proof Assume to the contrary that there exist points 0< b t < ... <
bn< 1 such that [0, bJ is a zero interval of UjE Un \ {O}, i = 1,..., n.

Set bo=O, bn+t =l, and choose x;E(bj,bi+d such that U;(X;) #-0,
i = 0, 1,..., n. (Note that for any X o E (0, b 1) there exists a Uo E Un for which
Uo(Xo) #-0.) By the above, such Xi exist. Then (u;(Xj))Zj~O is an (n+ l)x
(n + 1) triangular non-singular matrix since its diagonal entries are non
zero. But Un is n-dimensional, a contradiction. I

In a totally similar fashion we have
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O~x~a,

LEMMA 4.12. There exist at most n - 1 points 0< a1 < ... < as < 1
(s ~ n - 1) such that [ai' 1] is a zero interval of some u E Un \ {O}.

PROPOSITION 4.13. Let U*E Un\{O} have a zero interval [a, b], O<a<
b < 1. Then a = ai and b = bjfor some i = 1,..., s; j = 1,..., r. Furthermore there
exists a v E Un such that

!u*(x),
v(x) =

0,

and aWE Un such that

\

0,
w(x)=

u*(x ),

Proof Let u* be as above and set

U(u*)= {u: UE Un, u(x)=Oa.e. onZ(u*)}.

U(u*) is a subspace of Un of dimension k, 1~ k < n, which satisfies the
A-property. Furthermore the fundamental zero set of U(u*) contains the
interval [a, b]. As such we can apply Proposition 4.9 to U(u*) to obtain
v, WE U( u*) £ Un satisfying the above conditions. Since v( x) =°for all
x E [a, 1] and v(x) = u*(x) i=°for x E (a - G, a), some G> 0, it necessarily
follows that a = a i for some i = 1,..., s. Similarly b = b j for some
j= 1,... , r. I

Let {c1,..., cd denote the ordered distinct points of the set {b 1,... , bn

a1,..., as} and set Co = 0, Ck+ 1= 1. By the previous proposition, if u E Un has
a zero interval [a, b], then a = Ci , b = c j for some °~ i<j~ k + 1.

PROPOSITION 4.14. U"I«,_I,<,) is a T-systemfor i= 1,... , k+ 1.

Proof From Theorem 4.7, U" is a WT-system on [0,1]. U"I[<'_I,<'] is a
WT-system by Proposition 4.4. By Proposition 4.3, it follows that
U"I«'_I'<,) is a T-system. I

We deduce one additional property of U", For °~ i < j ~ k + 1, set

Vif= {u: UE U", u(X)=O,XE [0, Ci)U(Cj , I]}.

PROPOSITION 4.15. If dim V ij > 0, then V ij is a WT-system.

Proof Let dim Vif = mif> 0. Assume that Vif is not a WT-system. Then
by definition there exists a u* E Vij with at least mij sign changes on (c i, cJ
Thus there exist at least mij + 1 maximal open intervals in (c i , cj ) on which
u*(x) does not vanish. Set

U(u*) = {u: u E U", u(x) =°a.e. on Z(u*)}.
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Since [O,c;)u(cj ,I]£:Z(u*), it follows that U(u*)£:Vi}' Thus by
Theorem 4.7

mij+ 1~dim U(u*)~dim Vij=m ij ,

a contradiction. I
For ease of exposition let us rerecord the various properties of Un which

result from Theorem 4.7 and the A-property.

(a) Let B={x:xE(O,I), 3UEUn such that u(x),eO}. Then B=
U7=1(a i ,b;) where k~n and the (a;,b;) are disjoint. Furthermore, Un=
U~ Et> '" Et> U~, where U~ = Un I[ai.bi]' i = 1,..., k.

This immediately implies that the approximation problem on [0, 1] is
really k distinct, independent approximation problems on [a;, bJ,
i = 1,..., k. As such we might as well assume that B = (0, 1).

In this case,

(b)( 1) Un is a WT-system on (0, 1).

(2) Thereexistpointsco =0<c1 <'" <Ck<Ck+l=1 (k~2n-2)

such that Un I(ei-1,e,) is aT-system, i = 1,..., k + 1.

(3) If [a, b] is a zero interval of UE Un\{O}, then a=c;, b=cj for
some °~ i < j ~ k + 1, and

(i) there exists a v E Un for which

Iu(x),
v(x) =

0,

o~X <a,

a~x~ 1,

(ii) there exists aWE Un for which

\

0,
W(X)=

U(X),

O~x~b,

b<x~1.

(4) If Vij= {U: UE Un, U(X) =0, XE [0, C;)U (Cj ' I]} for O~ i<j~

k + 1, then Vij is a WT-system of dim V ij'

Note that (1) is actually contained in (4).
To complete the picture we prove that these conditions imply the

A-property. Without loss of generality, we will assume that we are in case
(b ).

THEOREM 4.16. Let Un be an n-dimensional subspace of C[O, 1]. Assume
that for each x E (0, 1) there exists a UE Un for which u(X) ,e 0. If Un satisfies
conditions (1)-(4) as above, then Un satisfies the A-property.
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Proof Let u* E Un \ {O}. We divide the proof into three cases.

Case 1. u* has no zero intervals. Let 0 < XI < .,. < Xr < 1 denote the
zeros of u* in (0, 1). Since Un is a WT-system, then it follows by a result of
Stockenberg [22, Theorem 1] that r ~ n - 1. Choose SiE { -1, 1}, i = 1,...,
r+1. We must exhibit a UEUn\{O} for which SiU(X)~O, XE(Xi_l,xJ,
i= 1,..., r+ 1, where xo=O, X r + 1 = 1.

From the sequence (SI"",Sr+l) form the sequence (6 1 ,. ••,6d where 6 i =
Sl( -1 }i+ I, i = 1,..., k, and the number of sign changes in the two sequences
(sl"",sr+d and (6], ...,6d are the same. Thus k~r+1~n. Set 11 =
(XO'X il ) where Sl= '" =Sip SiISil+]= -1. Set I 2 =(xip x iJ where Sil+l=

.. , = Siz' Si,Si, + 1 = -1, etc., to obtain 1],12"", I k. From Proposition 4.5,
there exists a subspace Uk of dim k of Un such that Uk is a WT-system on
[0,1]. From Proposition 4.1 there exists a UEUkc:;Un, U =1= 0, such that
6iu(x)~0, xEIi , i= 1,... , k. This is our required function.

We will therefore assume that u* has zero intervals. Each zero interval is,
by (3), of the form [Cim' cjm ], m = 1,..., p, where 0 ~ i l <il < i 2 < '" <ip ~

k + 1. Set J = U:;, = 1(c im , cjJ.

Case 2. (0, c]) r:t. J or (c k , 1) r:t. J. Assume, without loss of generality,
that (0, c 1) r:t. J. Then, by (3), there exists a VE Un for which

\

u*(X),
v(x} =

0,

Since u* has no zero interval in [0, Cil ], v has no zero interval in [0, ci,].

Furthermore VE VO.il , i.e., v(x):=O, XE(C il , 1]. By (4), v is an element of
the WT-system VO•i ,. We now apply the reasoning of Case 1 to the interval
(0, Ci,) and the subspace VO•i,.

Case 3. (0, c]) s J and (ck, 1) s J. Then u* has no zero interval in
[cjt, ciJ where O<il <i2 <k+ 1. By (3) there exists a VE Un for which

!
U*(X),

v(x) =
0, Ci, ~x~ 1.

Since v(x) = 0 for x E (0, cj,), it follows that v E Vjt,i2' and has no zero inter
val in [cjt, ciJ. Again we apply the reasoning of Case 1 since, by (4), ViJ,i2
is a WT-system. I .

The above theorem should be contrasted with work of Sommer [16, 17].
He presents slightly different conditions which imply the A-property.
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5. PROOF OF THEOREM 4.7

For convenience we restate the result to be proved in this section.

THEOREM 4.7. Let Un be an n-dimensional subspace of C[O, 1]. Assume
that Un satisfies the A-property. Given UE Un\{O}, set

[; = {u: u E Un, u(x) =°a.e. on Z(u)}.

Then the number of maximal open intervals of (0, 1) on which u(x) does not
vanish is bounded above by dim D.

The proof of this theorem is lengthy. As such it is divided into a series of
steps. The proof is by induction and we therefore first prove the case n = 1.

LEMMA 5.1. Theorem 4.7 holds for n = 1.

Proof Let U I = span {u}. Assume that there exists II = (a, b) and
I 2=(c, d), a<b~c<d, such that u(x) has strict sign e l on (a,b), e2 on
(c, d), and vanishes identically on [b, c]. By the A-property, there exists a
UEUI\{O} such that elu(x)~O, xE(a,b), and (-e2)u(x)~O, XE(C, d).
Since U= au, this is impossible. I

Associated with each UE Un\{O}, let II,'''' 1m (m may be infinite) denote
all the maximal open intervals of (0, 1) on which u does not vanish. For
given u E Un \ {O }, let m(u) denote the number of such intervals.

PROPOSITION 5.2. Iffor every u E Un \ {O }, m( u) ~ M (M some finite con
stant), then Theorem 4.7 holds.

Proof Let U*EUn\{O} be such that max{m(u):uEUn}=m(u*)=M.
Set

U* = {u: UE Un, u(x) =°a.e. on Z(u*)}.

If dim U* < n, then by induction we may assume that m(u*) = M ~

dim U*. We therefore assume that u* = Un, and M ~ n + 1. Let n,...,Itt
denote the maximal open intervals of (0, 1) on which u* does not vanish.
Since M is finite, we may, for convenience, assume that I~ ,..., It are in
increasing order, i.e., for x Elf", YEll, x < y if i < j.

Set

and let t* ELM be such that

ef"u*(x) > 0, XEI,*, i= 1,..., M.
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dij = f Ui(X) dx,
I'
J

i= 1,..., n; J= 1,..., M.

Since M> n, there exists a vector c = (c 1 , ... , CM ) i= 0 for which

Thus

M

L dijcj=O,
i~l

M

L cjf,u(x) dx = 0,
j~ 1 IJ

i= 1,..., n.

(5.1 )

Choose E E I M such that f.j = sgn cj if ci i= 0, and let f. j alternate in sign on
the indices J for which cj = 0, i.e., if cj1 = ch = 0, and cj i= 0 for all J1 < J< J2'
then f.j) f.h = -1.

By the A-property there exists a u£ E Un \ {O} for which

(i) f.jU£(x)~O, xEIf,j= 1,..., M,

(ii) u£(x)=O a.e. on Z(u*).

(Condition (ii) has no significance here since U* = Un') From (i) and the
choice of E, (sgn Cj)II' u£(x) dx ~°for all}. Thus from (5.1) it follows that
u£(x) = 0 for all x E Ii if cj i= O. If all the cj are non-zero or if no u E Un \ {O}
vanishes on a set of positive measure then we immediately arrive at a con
tradiction. We therefore assume that some (but not all since c i= 0) of the
c/s are zero.

Let I~ ,..., I~, k < M, be such that there exists an x rj E I/':, i = 1,..., k, for
which u£(xr } i= 0. Let I~ ,..., I~ denote the complementary set to {Ir* }k_ I

/ 1 M-k I l-

in {I!}t:,l' By the choice of t, u.(x) has a zero between Ir; and I~+l'
i = 1,... , k - 1. Set

U£ = {u: u E Un' u(x) =°a.e. on Z(u£)}.

Since Z(u£) contains {Int:,i\ u* ¢ U£, and dim U£ < n. Thus by the
induction hypothesis, k ~ dim U£ = s.

Case 1. u* = U on U7~ 1 I r; for some U E U£.
In this case (u* - u)(x) = 0 for all x E U7~ 1 I r; while (u* - u)(x) = u*(x)

for all x ¢ U7~ J I r;. Set

[; = {u: u E Un' u(x) =°a.e. on Z(u* - u)}.
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U* ~ D and thus by the induction hypothesis on D, and since (u* - u)(x) =
u*(x) on U~lk Ir~, it follows that M - k:::;; dim D. Thus M = k + M - k:::;;
dim U.+dim D:::;;'dim Un=n since U.rl D= {O}. Thus M:::;;n, a contradic
tion.

Case 2. u* # u on U~~ 1 Ir~ for any u E U•.
Let V= U.u {u*}. Since u*~ U. restricted to U~~I Ir~, and dim U.=

s ~ k, it follows that there exist s + 1 ordered points {Xi}:~ l in U~~ I Ir~ and
a VEV for which v(x;)(-I)i>O, i=I,...,s+1. Let v(x)=(J(u*(x)+u(x)
where U E U•. If (J( = 0, then it is easily seen that we contradict the induction
hypothesis. The function v E V £ Un has at least s + 1 maximal open inter
vals in U~~ 1 Ir~ on which v does not vanish. These intervals all lie in
U~~lIr~ since v(x)=(J(u*(x) on U~lkI/; and (J(u*(x) vanishes at the
endpoints of each Ir'" in (0, 1). Thus v(x) on (0, 1) has a total of at least
M - k + s + 1~ M +'1 (recall that s ~ k) maximal open intervals on which
v(x) does not vanish. This contradicts the maximality hypothesis on M. I

It remains to consider the case where there is no uniform bound on the
number of maximal open intervals of (0, 1) on which u(x) does not vanish
for all U E Un' This case is technically the more difficult since we cannot
apply the reasoning of Case 2 of the above proposition.

PROPOSITION 5.3. Theorem 4.7 is valid.

Proof We assume that there is no uniform bound on the number of
maximal open intervals of (0,1) on which u(x) does not vanish for all
U E Un' The proof in this case is also by induction. Lemma 5.1 covers the
case n = 1. We therefore assume that n> 1 and that we are given
u* E Un\{O} with m (m may be infinite) maximal open intervals If, ..., I:, of
(0, 1) on which u*(x) does not vanish. By our hypothesis we may assume
that m is as large as is necessary. We also assume, from the induction
hypothesis, that U* = Un, where

U* = {u: UE Un, u(x) =°a.e. on Z(u*)}

As in the proof of Proposition 5.2, let Si* E { -1, I}, i = 1,..., m, be such that

stU*(X) > 0, X E It, i = 1,..., m.

Given any set of n+l I;*'s, say, If, ...,I~+l' there exists a c=(c.....,
cn + 1 )#O for which

n+l

I c) f. u(x) dx = 0,
)~ I I,
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Let c= (c l ,. .. , cm) where C;= C;, i= 1,... , n + 1, and c;=O, i~n + 2. Let E =
(CI,"" cm), c;E {-I, I}, where

(1) Cj=sgncjifcj#O,

(2) Cj alternate in sign on adjacent If for which cj = 0.

Since Un satisfies the A-property, there exists a u l
E Un \ {O} for which

cjul(x) ~ 0, X Elf, j = 1,..., m, and ul(x) = °a.e. on Z(u*). Since

it follows that ul(x) = °on If if cj # 0. Furthermore, from the choice of E,

we may assume that between each It and If, i # j, ul(x) vanishes.
Let i l , , ik E {I,..., m} be such that ul(x) does not vanish identically on

It, j= 1, , k, and does vanish identically off U1~ I It Set

(This notation will be used throughout.)
Since C#O, we have u*¢:U(u l ), and kl=dimU(ul)~n-1. By the

induction hypothesis k ~ k I' and we can also apply to U( u I) all the results
of Section 4.

In particular, let M denote the interior of the support of U(u l
) in (0, 1),

i.e., for each XEM there exists a UE U(u 1
) for which u(x)#O. By

Lemma 4.8 and Proposition 4.14, it follows that there exist intervals
(ai,b;)~~1 (r~2n) such that U~~I(a;,b;)£:M£:U~=I(a;,b;), and
U(u I) I(ai, btl is aT-system of dimension m; ~ 1, for each i = 1" .., r.

Case I. There exists a subinterval (a, b) of M such that u* I(a,b) E

U(u l
) I(a,b)'

Let UEU(U I) be such that (u*-u)(x)=O, xE(a,b). Let U(u*-u) be
defined analogously to U(u*). Since u* ¢: U(u* - u), it follows that
dim U(u*-u)~n-1. Off M, (u*-u)(x)=u*(x). Thus (u*-u)(x) has at
least m - k maximal open intervals of (0, 1) on which (u* - u)(x) does not
vanish. Thus by the induction hypothesis m - k ~ dim U( u* - u) ~ n - 1.
Since k~n-l, it follows that m~2(n-l). This contradicts our
assumption on m.

Case II. u* I(a,b) ¢: U(u l ) I(a,b) on any subinterval of M.
We start with (aI' bd. U(u l ) I(at,bll is a T-system of dimension mI' For

notational ease, set ut(x)=u*(x). Since utl(at.bll¢: U(ul)l(at,bll there exists
u!(x)=(wt(x)-u(x), UEU(U I), such that uf(x) has at least m l sign
changes on (a I' bd. If ex = 0, then we contradict the fact that u E U( U I).
Thus we may assume ex = 1. Since u E U(u l ), uf(x) = ut(x) off M. There
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exists m - k (> n) maximal open intervals on (0, 1) (off M) on which ui
does not vanish. As such we can construct a function u2 with respect to ui
as ul was constructed with respect to u{.

The object of this exercise is to show that if we repeat this process a suf
ficient, but finite, number of times, with care, we will eventually arrive at a
situation where U(u2) ct. U(u l

). This is desired for the following reason.

Case lI(i). U(u2) ct. U(u1).
This implies that the support of u2 is not contained in the support of u1

.

Thus there exists a U1EU(U I
) and a U2EU(U I

) for which (U I +U2)(X)#O
a.e. off Z(u l )nZ(u2). It is easily seen that uifl.U(U I +U2). Thus by the
induction hypothesis, and since U(u l + U2) contains both U(u 1

) and U(u2),
it follows that dim U(u l

) < dim U(u l + U2) ~ n - 1. We now replace u l by
UI + u2, and ur(x) by ui(x), and start the process again. The exact con
struction of ui(x) and u2(x), as above, is unimportant. What is important
is that ui(x) = u*(x) on Z(u l

) n Z(u2) and u*(x), thereon, has many
maximal open intervals on which it does not vanish. If we can repeat the
above process a sufficient number of times, then we must eventually arrive
at a contradiction.

Case lI(ii). U(u2) s; U(u l
).

We now construct an algorithm which shows that we must eventually
arrive at Case 1I(i). In this algorithm we construct a sequence of Ill,
j = 1, 2,.... It is important to note that if we do not revert to Case lI(i), then
ul(x) = u*(x) for all j, off M. We let JlJ = (Il{ , , Iln, where Il{ denotes the
number of sign changes of ul on (ai' bJ, i = 1, , r, with the condition that
if 111 ~ mi , then we set Il{ = mj' We will prove that JlJ+ I> JlJ where the
ordering here is lexicographic, i.e., (Il{ + 1,..., Il! + I) > (Il{ ,..., Iln if and only if
Il{+ 1= Il{, i = 1,..., s -1, and 111+ I> 111, some s = 1,..., r. At each step j we
have a ul, as previously indicated, and a uJ which is constructed as was u t

with respect to ur for which U(uJ) s; U(u l
). We will show that if Il{ = m i ,

then uJ(x) vanishes identically on (a j , bJ Since UJE U(u l
), uJ 1= 0, and

there are only r intervals (ai' b,), r ~ 2n, this process cannot continue
indefinitely, i.e., we must, after a finite number of steps, revert to Case lI(i).

This is the idea behind the algorithm. We now prove these various
claims. The construction of u2 and ui has been given. The general case is
slightly different than this case. So let us prove directly our conclusion
regarding ui and u2.

LEMMA 5.4. u2(x) vanishes identically on (at, bJl and Jl2>JlI.

Proof Since u2
E U(u l

) and U(u l
) I(al,btl is a T-system of dimension m l ,

either u2(x) vanishes identically on (aI' btl or has at most m l -1 zeros on
(aI' bl)' Assume the latter. ui was constructed with at least m t sign
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changes on (a I' bd. By construction u2 must have at least m I sign changes
on (aI' bd. This contradicts the fact that u2 has at most m I - 1 zeros on
(ai' bl)' Now, by construction, ul(x) i=. 0 on (ai' bd and therefore we have
/li<ml=/li· Thus Jl2>JlI. I

This same method of proof shows

LEMMA 5.5. If /l{ = m i, then uJ(x) must vanish identically on (ai' bJ,

In general we construct uJ*+ I and uJ+ I from ut and uJ. However, note
that we are always looking back to U(u l ) rather than to U(uJ).

The general construction is as follows: Given ut, uJ, and JlJ, let k be the
smallest index for which uJ(x) does not vanish identically on (ab bk).

Recall that UJE U(ul)\{O}. Since U(u l ) I(Qk,bk) is a T-system, and U(uJ)£
U(u l ), it follows from the results of Section 4 that U(uJ) is a T-system on
(a b bk ) of dimension m{ ~ m k . By construction uJ has at least as many sign
changes on (ab bd as ur Thus m£ - 1~ /l£. Since ut(x) = u*(x) off M, it
follows as in Case I that ut ¢ U(uJ) on any subinterval of M. Thus there
exists a uf+ 1= ut - u, u E U(uJ), such that uf+ I has at least m£ sign changes
on (ak,bk). Furthermore, Uf+l(X)=Ut(x) for all xEU7,:/(a h bJ since
u(x)=O on U7~/(ai,bi) for all UEU(UJ). Thus /l{+l=/l;, i=l,...,k-l,
and /l{+ I ~ m£ > /l{ Hence Jl J+ I> Jl J. To complete the construction we
construct uJ+ 1 with respect to ui+ I as u l was constructed with respect to
u[. I

Remark. If no u E Un \ {O} vanishes on a set of positive measure, then
the proof of Theorem 4.7 is immediate based on the first part of the proof.
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